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The absence of a missing moment inertia in clean solid 4He suggests that the minimal experimentally
relevant model is the one in which disorder induces superfluidity in a bosonic lattice. To this end, we explore
the relevance of the disordered Bose-Hubbard model in this context. We posit that a clean array of 4He atoms
is a self-generated Mott insulator; that is, the 4He atoms constitute the lattice as well as the “charge carriers.”
With this assumption, we are able to interpret the textbook defect-driven supersolids as excitations of either the
lower or the upper Hubbard bands. In the experiments at hand, disorder induces the closing of the Mott gap
through the generation of midgap localized states at the chemical potential. Depending on the magnitude of the
disorder, we find that the destruction of the Mott state takes place for d+z�4 either through a Bose-glass
phase �strong disorder� or through a direct transition to a superfluid �weak disorder�. For d+z�4, disorder is
always relevant. The critical value of the disorder that separates these two regimes is shown to be a function
of the boson filling, interaction, and the momentum cutoff. We apply our work to the experimentally observed
enhancement 3He impurities have on the onset temperature for the missing moment of inertia. We find
quantitative agreement with experimental trends.
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I. INTRODUCTION

While superflow in a state of matter possessing a shear
modulus might initially seem untenable, experimental claims
for precisely this phenomenon in solid 4He now abound.1–12

Reported in the experiments of Kim and Chan1,2 �KC� was a
dramatic change below 200 mK in the period of a torsional
oscillator containing solid 4He. Because superfluids come
out of equilibrium and detach from the walls of the rotated
container, they are expected to give rise to a period shift in
such a geometry, assuming, of course, the rotation velocity is
less than the critical velocity to create a vortex. The result is
a missing moment of inertia13,14 �MMI� and hence the period
of oscillation decreases. The magnitude of the MMI is a
direct measure of the superfluid fraction. In the original ex-
periments reported by Kim and Chan,1,2 the superfluid frac-
tion ranged from 0.14% for 4He in Vycor1 to 2% in bulk 4He.
However, Rittner and Reppy7,8 showed that the quench time
for solidifying the liquid is pivotal in determining the super-
fluid fraction. In one extreme, when the sample is fully an-
nealed, no MMI occurs. In the other extreme, the MMI in-
creased to an astounding 20% in samples in which the
solidification from the liquid occurred in less than 2 min.
While not all groups12 have been able to eliminate the MMI
signal entirely by annealing4,6 the sample and in fact there is
at least one claim of MMI in a single crystal,15 the enhance-
ment of MMI by a rapid quench does not seem to be in
question. In fact, two independent experiments point to the
key role played by disorder: �1� the measurement of Todosh-
chenko et al.,16 which showed that the melting curve of 4He
remains unchanged from the T4 law expected for phonons in
ultrapure samples with a 3He concentration of 0.3 parts per
109 �ppb�, and �2� the experiments of Clark and Chan,3

which revealed that increasing the 3He impurity
concentration3 from 20 to 40 ppm increases the transition
temperature from 0.35 to 0.55 K.

Clearly, the standard textbook supersolid in which va-
cancy or interstitial defects Bose condense17,18 fails to ex-
plain the disorder dependence of the MMI. In fact, it is un-
clear at this writing if even a supercomponent is needed19 to
explain the MMI, primarily because experiments20 designed
to detect persistent mass flow have revealed no telltale sig-
nature. Monte Carlo simulations21 reveal, however, that su-
perflow in solid 4He is confined to grain boundaries. This
observation is supported by the experiments of Sasaki et al.,9

who observed mass flow only in samples containing grain
boundaries. Nonetheless, the precise relationship between
this experiment and the torsional oscillator measurements is
unclear because mass flow was observed at temperatures �1.1
K, which is not far from the bulk superfluid transition tem-
perature� vastly exceeding the onset temperature for MMI in
the torsional oscillator experiments,2 namely, Tc=0.2 K.

Even if the MMI is not tied to superflow, disorder is still
the key player underlying the experimental observations.12

As disorder can induce superfluidity in the disordered Bose-
Hubbard model, we explore its utility as a minimal model for
the experimental observations. Certainly, this model does not
have all of the microscopic details necessary to describe 4He,
in particular the precise details needed to describe a grain
boundary or the long-range interactions between 4He atoms.
Our central claim is that it only serves as a minimal model
for describing disorder-induced superflow in a bosonic sys-
tem. Our work is based on a simple claim: 4He is a hexago-
nally close-packed self-generated Mott insulator. In a self-
generated or self-assembled Mott insulator, the lattice and
the “charge carriers” are one and the same. In contrast, in
fermionic Mott insulators, the electrons occupy pre-existing
lattice sites formed by the ions. Our characterization of 4He
as a self-generated Mott insulator is relevant for three rea-
sons: �1� In a supersolid the relevant transport is of the 4He
atoms themselves. Hence, if they form a Mott insulator in the
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clean system, no transport is possible. �2� Experiments12 and
simulations show the absence of MMI in the clean limit.21,22

�3� We can immediately classify the candidate supersolids
with this scheme because disorder can either23 �a� self-dope
the system24,25 or �b� create midgap states.26 The former
would generate either vacancies or interstitials and hence ex-
citations in either the lower or upper Hubbard bands. The
Andreev-Lifshitz17 scenario in which vacancies or intersti-
tials Bose condense can be thought of as arising from doping
a self-generated Mott insulator. We call such a state SS1. In
electronic systems, disorder is well known to have such an
effect.24 We will show that SS1 does not obtain in the disor-
dered Bose-Hubbard model. Rather a superfluid state �SS2�
forms from overlapping localized midgap states.26–34 We ar-
gue that SS2 is most relevant to the experimental observa-
tions.

We establish several results in this paper. First, we use the
replica technique coupled with a renormalization-group
analysis to show that weak disorder and large disorder dis-
rupt the Mott insulator �MI� in radically different ways. In
particular, the critical value of the disorder that separates
these two regimes is a decreasing function of filling. Second,
in the weak disorder regime, a direct transition from the su-
perfluid �SF� to the Mott insulator is possible, whereas such
a transition always involves the Bose-glass �BG� phase at
large disorder. This result resolves the controversy30,32,33 that
the destruction of the superfluid necessitates an intermediate
Bose-glass phase. Finally, we offer a quantitative test of this
model by applying it to the 3He enhancement of Tc. The
quantitative agreement suggests that the essence of the MMI
in the experiments is captured by the disordered Bose-
Hubbard model.

II. INITIAL CONSIDERATIONS

To describe boson motion in a random potential, we adopt
the site-disordered Bose-Hubbard model

H = − t�
�i,j�

�bi
†bj + c.c.� + �

i

�ini +
V

2 �
i

ni�ni − 1� . �1�

In this model, bi
† is the creation operator for a boson at site i

and ni is the particle number operator and t and V are the
Josephson coupling and on-site repulsion, respectively. We
also define a value J=zt, where z is the number of nearest-
neighboring sites.

Though much of the theoretical work27–29,31,33,34 on the
disordered Bose-Hubbard model has confirmed the originally
proposed picture that an intermediate Bose-glass localized
phase disrupts the MI-SF transition, several key issues re-
main:

P1. Is there a direct MI-SF transition in the presence of
disorder? For example, several analytical treatments26,31,33,34

suggest that the Bose-glass phase completely surrounds the
Mott insulating phase, making a direct transition from the MI
to SF impossible. However, simulations27,28,30 and a
renormalization-group analysis32 find that a Bose glass is ab-
sent in d=2 at commensurate fillings. In fact, the
renormalization-group analysis of Pazmandi and Zimanyi32

pointed out plainly that the weak and the strong disorder
cases are fundamentally different. Only in the strong disor-
dered case does the Bose-glass phase completely surround
the Mott lobes. However, Herbut33 also provided a convinc-
ing treatment of the large-filling limit and concluded that
disorder is always relevant and destruction of the superfluid
obtains through the Bose glass even in d=2.

P2. Do Mott insulators vanish for unbounded distribu-
tions? Fisher et al.26 argued that no Mott insulating phases
are possible when the width of the disorder exceeded V /2 at
T=0. Consequently, for unbounded distributions, Mott insu-
lators are absent at T=0 and only a superfluid phase exists.26

Does the same hold for finite temperature? As the distribu-
tions characterizing disorder35 in optical lattices is typically
unbounded, this question must be resolved.

A. Resolution

We resolve both of the problems in this paper. First, we
show that the missing ingredients that square these seem-
ingly contradictory results in P1 are �1� dimensionality, �2�
critical momentum cutoff �c and �3� a filling and interaction-
dependent critical value of the disorder �c. For �=4− �d
+z��0, disorder is always relevant. In this case, the Mott
insulating phase is destroyed and a BG obtains. This is in
agreement with the work of Herbut33 on the destruction of
superfluidity in d=1 and 2 always takes place through the
Bose glass. He found that z=1.93, implying that ��0,
matching our criterion for the relevance of disorder.

For systems with ��0, there exists a boundary in phase
space separating disorder-relevant and disorder-irrelevant re-
gions. For filling m=1, a direct transition is always allowed.
For large fillings, the situation is more complicated. If the
momentum cutoff �determined by the lattice constant� ex-
ceeds a critical value, ���c, the MI is surrounded by a BG
phase and direct transition from MI to SF is forbidden as
illustrated in Fig. 1. In the opposite regime, ���c, the
strength of the disorder is the key ingredient. For the weak
disorder case, ���c, a direct transition is allowed for large
fillings, while it is forbidden for strong disorder, ���c.
These results are in accord with the renormalization-group
�RG� analysis of Pazmandi and Zimanyi,32 who studied an
infinite-range model and found32 that for ��0 a direct tran-
sition is possible. For ��0, they found that disorder is in
general relevant except perhaps at the particle-hole symmet-
ric point at small filling, where a direct transition survives at
weak disorder.

In addition, we analyze a Gaussian distribution for the site
energies here and demonstrate how temperature and disorder
are intertwined. At finite temperature, we establish the exis-
tence of integer-filling Mott states. However, the T=0 analy-
sis is beyond the scope of the treatment here as it corre-
sponds to the infinite disorder limit. In particular, our replica
analysis on unbounded distributions is valid strictly when

��2/V � 1, �2�

where � is the variance of the distribution and V is the on-
site repulsion. In fact, this breakdown is fundamentally re-
lated to our central point that for bosonic systems, disorder
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destroys Mott insulators and gives rise to superfluids. To see
how this comes about, it is sufficient to integrate out the
randomness by using the replica trick

ln Z = lim
n→0

Zn − 1

n
, �3�

in which n represents the number of replicas and Z is the
partition function. Performing the integral over the disorder,

Zn = �
i
� d�i� DbiDbi

†e−��i − �− ��	2/2�2
exp�− ��a

Ha�

= �
i
� DbiDbi

†e−�Heff,

Heff = − t �
�i,j�,a

�bi
a†bj

a + c.c.� − �
i,a

�� + V/2�ni
a

+
V − ��2

2 �
i

�ni
a�2 − �

i,a�b

��2

2
ni

ani
b, �4�

results in an effective Hamiltonian for the disordered prob-
lem. Here a is the replica index and we have assumed that
the disorder is described by a Gaussian distribution of width
�. We see clearly that the on-site interaction is replaced by

Veff = V − ��2. �5�

Consequently, at sufficiently low temperature, disorder can
destroy the Mott gap.

This paper is organized as follows: In Sec. III we compute
the phase diagram for the disordered Bose-Hubbard model
by using replicas and a renormalization-group analysis.
Since we start our analysis from the strongly interacting re-

gime, any diagrams that are calculated cannot be computed
using Wick’s theorem. To circumvent this problem, we re-
sorted to the analysis detailed in the Appendix. We explicitly
compare the results for the Gaussian and the uniform distri-
bution cases studied earlier.26 The analysis of the phase
boundary for the Bose glass is presented at the end of Sec.
III. This analysis is particularly lengthy as the topology of
the phase boundaries is found to be delicately determined by
the strength of the disorder and the cutoff. We close with an
application of our central result that disorder enhances super-
fluidity in the problem of 3He-induced enhancement of the
onset temperature for missing moment of inertia.

III. PHASE DIAGRAM OF THE DISORDERED
BOSE-HUBBARD MODEL

In this section, we derive the phase diagram for the dis-
ordered Bose-Hubbard model for the Gaussian and uniform
distributions of site energies. To establish the phase bound-
aries for the MI and SF phases, we employ a saddle-point
analysis on the partition function26,36–40

Z = Z0� �
i

D�i�	�D�i
��	�exp�− S��i�	 , �6�

S��� = �
i,j

�J−1	ij�i
��	�� j�	�

− �
i

ln
T	 exp�� 	�i�	�bi
a† + H.c.�

0
�7�

by introducing a Hubbard-Stratonovich field � j to release the
bi

†bj term. Appearing in Eq. �6� are �J−1	ij, the inverse matrix
of hopping rates, which will determine the band structure for
the kinetic energy and Z0=Tr exp�−�H0�, bi

a�	�
=eH0	bi

a�0�e−H0	.
Differentiating the free energy with respect to � yields the

saddle-point equation41

�
j

�J−1	ij�i
a�	� = �bi

a�	�� . �8�

Because �i
a is linearly related to �bi

a�, its average value will
serve to define the superfluid order parameter. This can be
seen more clearly by performing the cumulant expansion on
bi

a†�	�. The action can then be rewritten as

S��� = ���
i,a

rij�i
a�� j

a + c.c. + u�
i,a

��i
a�4

+ v �
i,a�b

��i
a�2��i

b�2 + O����6�� ,

rij = �J−1	ij − 
ij�
0

� �
0

�

d	d	��Tbi
a†�	�bi

a�	��� , �9�

where r matrix acts as the mass term and hence determines
the appearance of superfluid phase.

A. Gaussian disorder

For the Gaussian case, the Hamiltonian consists of two
parts,

FIG. 1. �Color online� Phase diagram for the disordered Bose-
Hubbard model as a function of chemical potential � /V and hop-
ping strength J /V. MI, BG, and SF stand for Mott insulator, Bose
glass, and superfluid, respectively. In the presence of disorder, the
lobes are shrunk; and we have two phases inside the lobes, MI and
BG, and outside we have SF phase. �a� The typical phase diagram
when ��0 and ���c or when ��0, ���c, and ���c. In this
case, direct transition from MI to SF is possible only at m=1. �b�
The typical phase diagram when ��0, ���c, and ���c. In this
case, direct transition from MI to SF is possible for many filling
numbers.

MINIMAL MODEL FOR DISORDER-INDUCED MISSING… PHYSICAL REVIEW B 78, 014515 �2008�

014515-3



H0 =
Veff

2 �
a,i

�ni
a�2 −

��2

2 �
i,a�b

ni
ani

b − �eff�
a,i

ni
a,

H1 = − t�
�i,j�

bi
a†bj

a + c.c., �10�

where �eff=�+V /2. Because the hopping term is a pertur-
bation, our theory is valid strictly for V�J. In addition, since
we are working in the limit in which the Mott lobes are well
formed, we must assume that Veff�0 and �V�1. The latter
two constraints can be written as 1��, where �=��2 /V. It
is this parameter that we will use to characterize the strength
of the disorder. Using the eigenstates of H0, that is, the eigen-
states of particle number, �m ��= 1

2�exp�i�ama�, we have,

�Tbi
a†�	�bj

b�	���0= �11�

�
1

Z0
�
m

��m�eH0	bi
a†e−H0	eH0	�bj

be−H0	��m��	 − 	��

+ �m�eH0	�bj
be−H0	�eH0	bi

a†e−H0	�m��	� − 	�	 . �12�

For the above to be nonzero, we have to set a=b and i= j.
Inserting a complete set of states, 1=�c�mc=1

� �mc��mc�, be-
tween bi

a† and bi
a, we have only two terms left, �ma�1�c

=a�mc�c�a���ma�1�c=a�mc�c�a��. Note that we have
replica symmetry between the initial and final states. How-
ever, replica symmetry breaking must be present in the inter-
mediate states to have a nonzero correlation. The inserted
state together with the creation and annihilation operators
will lead to a term of the form E0�mi

a�1,mi
b�−E0�mi

a ,mi
b�,

where E0�mi
a ,mi

b� is the eigenenergy of H0. The explicit form
for this term is

E0�mi
a,mi

b� =
Veff

2 �
a,i

�mi
a�2 −

��2

2 �
i,a�b

mi
ami

b − �eff�
a,i

mi
a.

�13�

After integrating over 	 and 	�, we obtain

� d	� d	��Tbi
a†�	�bj

b�	���0 =
�m + 1�

�+
�1 −

1

��+
�

+
m

�−
�1 −

1

��−
�

�
�m + 1�

�+
+

m

�−
, �14�

where we can neglect 1 /��� only when the temperature is
small relative to the Mott gap, that is, kBT /���1. In the
above equation, we are considering the energy of one replica,
so the mi

ami
b term will give rise to �n−1�mi

2, part of which is
linear in n. Because we will take the limit n→0 in the end,
we can neglect all the high-order terms when we calculate
the energy of one replica. In terms of D=��2 /2, the energies
�� are defined as

�� = E0�mi
a � 1,mi

b� − E0�mi
a,mi

b� �15�

=
Veff

2
� m�Veff

2
− �n − 1�

��2

2
� � �eff

= ��+�m� = mV − � − �m + 1�D
�−�m� = �1 − m�V + � + �m − 1�D �Gaussian� .

�
�16�

We defined m to be the integer closest to �eff /Veff because in
the low-temperature limit, only this term in Z0 dominates.
This holds for a system with nonconserved or commensurate
particle number. For a system with conserved and incom-
mensurate particle number, we should replace m by the par-
ticle number mi on each site.

For the single-component case, r is a scalar and we just
need r�0 to have superfluid order. In our case, however, r is
a matrix which must be diagonalized. For simplicity, we con-
sider only nearest-neighbor hopping in one dimension case
where Jij = t�
i,j+1+
i,j−1�. The diagonal hopping matrix will
be 
ijJ cos� 2j�

N �, with j=0,1 , . . . ,N−1, which is the quantum
number of momentum k=2�n /L. Here N is the number of
sites; L is the system size; and J=zt, where z is the number
of nearest neighbors. Diagonalizing the hopping matrix will,
of course, require various linear combinations of the �i

fields. Such linear combinations will leave �Tbi
a†�	�bi

a�	���0
invariant because of the 
ij appearing in front. Consequently,
the condition for superfluid order is

rij�n� �
1

J cos�2n�/N�
− �Tbi

a†�	�bi
a�	���0 � 0.

Note that superfluid order arises any time one of the rij�s
�0. The phase diagrams we construct in this section corre-
spond strictly to phases in which �i=0 and �i�0. In Sec.
III C, we will make the distinction between the localized
phase being gapped or ungapped.

The onset of a MI state is determined by the largest ei-
genvalue of �J−1	. For a continuous band, this corresponds to
1 /J. Consequently, the phase boundary separating MI and SF
phases is given by

1

J
=

�m + 1�
�+

+
m

�−
. �17�

Using Eq. �15�, we rewrite Eq. �17� as

m�m − 1�V2 + V��1 − 2m�� + J + D�m + 1 − 2m2�	 + �2

+ ��J + 2mD	 − �m + 1�DJ + �m2 − 1�D2 = 0.

This equation describes a set of superplanes in terms of V
−�−� for different m. For a given chemical potential, it
describes the phase boundary as a function of disorder and V.
For m=1, that is, one boson per site, we recover exactly
Vc��� �Eq. �36�	 as the phase line between SF and MI. The
analogous expressions can also be derived for fixed disorder
�=D /V but varying chemical potential y=� /V and x=J /V
which reads
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y = m −
1

2
−

x

2
− m� �

1

2
��1 − 2��2 + �4m + 2��2� − 1�x + x2.

�18�

The result is shown in Fig. 2. From the figure, we see that the
distance between the upper and lower boundaries of each
lobe have shrunk by 2� and the whole lobe is shifted down-
ward by m� relative to the ordered solution. As is evident,
the MI phase still exists at finite temperature for the un-
bounded distribution. Finally, increasing disorder decreases
the size of the Mott lobes. That the size of the Mott lobes
shrinks with disorder was also found in the extensive simu-
lations of Trivedi and co-workers28 for a uniform distribution
of site energies.

B. Uniform distribution

For completeness, we also compute the uniform distribu-
tion of site energies of width 2� studied in the original treat-
ment of the disordered Bose-Hubbard problem.26 Integrating
over the disorder in this case is also straightforward and
yields

Zn = �
i
�

�

�

d�i
1

2�
� DbiDbi

† exp�− ��a
Ha�

= �
i
� DbiDbi

†e−�Heff,

Heff = − t �
�i,j�,a

�bi
a†bj

a + c.c.� − �
i,a

�� + V/2�ni
a +

V

2 �
i

�ni
a�2

−
1

�
ln sinh����

a

ni
a� +

1

�
ln���

a

ni
a� , �19�

where the last two terms are interactions generated by the
integration over the disorder. Note that the ��2 reduction of
the on-site repulsion is absent in the uniform distribution
case. Consequently, the T=0 limit can be taken explicitly.

Introducing �i
a and still choosing the basis that diagonalizes

H0 to perform the cumulant expansion, we compute the last
two terms at T=0 and the n→0 limit to be

lim
�→+�

− � 1

�
ln sinh����

a

mi
a � 1� −

1

�
ln���

a

mi
a � 1��

+ � 1

�
ln sinh����

a

mi
a� −

1

�
ln���

a

mi
a��

= − lim
�→+�

lim
n→0

1

�
ln� sinh���nmi

a � ���
sinh���nmi

a� �
= − lim

�→+�
lim

y=n��m→0

1

�
ln� sinh�y � ���

y
�

= − lim
�→+�

1

�
ln cosh����� = − � .

Thus we have

�+�m� = mV − � − � ,

�−�m� = �1 − m�V + � − � �uniform� , �20�

where � is replaced by �+� in the first term and by �−� in
the second term. It is this structure that makes the width of
the MI lobes shrink by � as a function of filling relative to
that in the clean limit. We then use Eq. �14� to obtain

y = m −
1

2
−

x

2
�

1

2
��1 − 2
�2 + �4m + 2��2
 − 1�x + x2

�21�

as the phase boundary in the x−y�J /V−� /V� plane �x and y
represent J /V and � /V� for the Mott insulator-superfluid
transition. Here 
=� /V.

The phase diagram in the x-y plane shown in Fig. 3�a�
bears close resemblance to the finite temperature counterpart
of the Gaussian distribution. The only difference between the

FIG. 2. �Color online� Phase diagram for the disordered Bose-
Hubbard model with a Gaussian distribution of site energies. The
two values of the disorder correspond to �=��2 /V=0.4 and �
=0.6.

FIG. 3. �Color online� �a� Phase diagram for disordered Bose-
Hubbard model with uniform distribution with 
=� /V=0.4. �b�
Comparison between the replica theory and the treatment of Fisher
et al. �Ref. 26� for the infinite-range hopping model with a uniform
distribution of site energies.
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two is that the disorder in the Gaussian case is characterized
by �=��2, whereas for the uniform distribution at T=0, the
strength of the disorder is set by 
=� /V. Consequently, in
the uniform distribution, the Mott lobes display a vertical
shift of 
 rather than � as in the Gaussian case. For an
independent check on the accuracy of the replica method, we
consider the uniform distribution but with infinite-range hop-
ping. In Fig. 3�b� we compare the replica method with the
mean-field criterion

x = −
2


ln� �m−�y+
�	�m+1��m−1−�y−
�	m

�m−�y−
�	�m+1��m−1−�y+
�	m�
, �22�

derived by Fisher et al.26 As evident, only minor quantitative
differences obtain, lending credence to the replica treatment
presented here.

C. Bose glass

In the dirty boson model, a localized phase �Bose glass�
exists in which disorder rather than the on-site repulsion
�Mott insulator� is the root cause. Unlike traditional spin-
glass phases which are characterized by an Edwards-
Anderson order parameter, the Bose glass does not admit
such a description. In fact for the Bose-Hubbard model, the
only Edwards-Anderson parameter that could be nonzero is
�bi

a�t�bi
c�t���. For the superfluid phase, this order parameter is

trivially nonzero. However, there is no phase in which such
order exists without simultaneously relying on superfluid or-
der. With nearest-neighbor Coulomb interactions, such a
glass is possible42 independent of superfluidity. The current
analysis is limited, however, solely to the on-site Coulomb
case.

To analyze the Bose glass, we use the standard26,43–45 one-
loop renormalization-group equations in conjunction with
the mean-field phase boundaries to derive a criterion for the
onset of the Bose-glass phase. The field theory of our model
is

S��� = �
k,a
�1 − J� d	�T	b�	�b†�0�����a�k��2

+ �
k

�ka0�2

2
��a�k��2 + �

i,a
gaa��i

a�4

+ �
i,a�b

gab��i
a�2��i

b�2 + O����6� , �23�

where a0 is the lattice constant. The coefficients gaa and gab
can be calculated using the cumulant expansion procedure
outlined in the Appendix. For a Gaussian distribution, these
coefficients are given by

gab = −
J2�2

12�2� �m + 1�2

�+
2��+ + D/2�

+
m2

�−
2��− + D/2�

+
m�m + 1�
�V − 3D� � 1

�+
+

1

�−
�2� , �24�

gaa = −
J2�2

48�2� �m + 1��m + 2�
�+

2��m + 1
2�V − �m + 2�D − �	

+
m�m − 1�

�−
2�− �m − 3

2�V + �m − 2�D + �	� . �25�

The signature of the disorder-induced localized phase is
the divergence of the coupling constant for the interaction
between different replicas. To this end, we derive the one-
loop renormalization equations45

dgaa

d�
= �gaa − Kd��p + 2�gaa

2 + p�
c

gacgca� ,

dgab

d�
= �gab + Kd��4 + 2p��gaa + gbb�gab + 4gab

2 + p�
c

gacgca�
for the coupling constants gab and gab. Here � is the standard
rescaling parameter, �=4− �d+z�, Kd= 2

�4��d/2��d/2� , K2= 1
2� , p

is the number of the component of � �p=2 in this case�, and
d is the spatial dimension. We are particularly interested in
p=2 and d=2. Care must be taken in analyzing these equa-
tions, however, as the coupling constants, gab and gaa are
actually ultrametric matrices. Using the Parisi46 multiplica-
tion rule for such matrices, we partition gab into a diagonal
part g̃ and an off-diagonal part which is a function g�x� de-
fined in the domain x� �0,1�. At the replica symmetric fixed
point, we find that

g̃ =
�p

16�p − 1�Kd
, �26�

g�x� = −
��4 − p�

16�p − 1�Kd
for x � �0,1	 . �27�

This fixed point is unstable43 for p�4�1−��. That is, for d
�3.5, there is a runaway to the strong disorder region sig-
naled by g�x�→�, the signature of localization. The main
criterion for the boundary to separate the disorder-relevant
and disorder-irrelevant regions comes from the renormaliza-
tion equation for g�x�. If we consider the replica symmetric
case, we only need two parameters, the off-diagonal, g�x�
=g, and diagonal parts, g̃. The renormalization equations47

simplify to

dg̃

d�
= �g̃ − Kd��p + 2�g̃2 + pg2	 ,

dg

d�
= �� − Kd�4 + 2p�g̃	g + �4 − 2p�g2. �28�

Two characteristic properties of the Bose glass in this RG
scheme are �1� g→� and �2� �=0. As is well known, when
g→ +�, the RG procedure breaks down.48 Hence, we can
use the RG procedure to demarcate the boundary between
the disorder-relevant and disorder-irrelevant regimes. From
Eq. �28�, the condition for g to run to infinity is
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� − Kd�4 + 2p�g̃ � 0. �29�

Therefore, the boundary separating the disorder-relevant re-
gion and the disorder-irrelevant region is

� − Kd�4 + 2p�g̃ = 0. �30�

This result is, in fact, similar to the long-wavelength limit
derived by Fisher et al.26 In fact, they applied the replica
trick and RG analysis to a similar mean-field action. Without
considering the p dependence, they found that the coefficient
of g2 �see Eq. �28�	 is always positive. However, as clear
from Eq. �28�, in the general case when the p dependence is
considered, this coefficient can be negative. Note that the
presence of p is twofold as it also generates a cross term g̃g
in the RG equations.

Equation �30� together with that for �=0, that is, r�0,
gives rise to the Bose-glass phase boundary in the phase
diagram. This criterion depends on �, x=J /V, y=� /V, disor-
der, and the momentum cutoff. Hence, if �, the disorder, and
the momentum cutoff are given, Eq. �30� will define a series
of curves in the x-y plane. For Gaussian disorder, in the
domain � /V� �m+ 1

2 −2
 ,m− 3
2 +
�, g̃�0. As a result, if �

�0, Eq. �29� is always satisfied, which means that for sys-
tems with d+z�4, disorder is always relevant. In this case,
the �=0 regions all turn into the Bose glass and a direct
transition between a Mott insulator and the superfluid is not
possible. If ��0, the criterion �Eq. �29�	 will separate
disorder-relevant and disorder-irrelevant regions in the x-y
plane. In general, the criterion depends on x, y, the disorder,

 and the momentum cutoff �, and is given by

xd = xd�y,�,�� =�− 48�2�

�2/V

� � �m + 1��m + 2�
�m − �m + 1�� − y	2�m + 1

2 − �m + 2�� − y	�
+ � m�m − 1�

�1 − m + �m − 1�� + y	� 3
2 − m + �m − 2�� + y	�−1/2

.

For different fillings m, we have a class of curves which
form concentric lobes x=xd�y ,� ,
� in the x-y plane. Thus,
for each filling number m with ��0, we have a critical value
xd. If x�xd, disorder is relevant, while for x�xd disorder is
irrelevant.

The tips of the MI lobes are at y= �m+1��−1+ �1
−2���m�m+1�, precisely where x reaches its maximal value.
Recall that �=��2 /V. For large fillings, m→� and y ap-
proaches y0, where y0=m− 1

2 −m�. To see whether the
disorder-relevant region lies within the MI lobes in x-y plane
�recalling that x=J /V and y=� /V�, we calculate the value of
x, xMI, for the MI lobes evaluated at y0 and xBG of BG lobes
evaluated at y0. Consequently, we consider the ratio xBG

xMI . This
ratio

xBG

xMI =
2��6�− ���1 − 2��

�2/V � 2m + 1
�m2 + m + 1

� �31�

is a decreasing function of filling number m, and for large
filling number,

xBG

xMI =
4��6�− ���1 − 2��

�2/V
as m → � . �32�

Whether we can have a direct transition from MI to SF de-
pends on whether the above ratio is greater or less than 1. If
the above ratio is greater than 1, it means that the curve
demarcating the disorder-relevant region intersects the r=0
curve. In this case, the BG region is located in the upper and
lower regions of MI lobes as depicted in Fig. 1. Conse-
quently, in such cases, a direct transition from MI to SF is
allowed. If the above ratio �Eq. �32�	 is less than 1, the BG
surrounds the MI and a direct transition between the MI and
SF is forbidden. Because for m=1, xc runs to infinity as y
→0; the disorder curve always intersects the r=0 curves at
m=1. Consequently, we reach the conclusion that for m=1, a
direct transition is always allowed. This prediction is in prin-
ciple testable by direct numerical simulation. The phase dia-
gram, Fig. 4, in the � /J-V /J plane displays the direct tran-
sition from the MI to the superfluid as the disorder is
increased. In this plane, a further increase in the disorder
leads to a transition to m=2 Mott insulating state. Hence, we
predict that the superfluid density should be a nonmonotonic
function of the disorder. Similar conclusions were reached in
a Landau-Ginzburg treatment49 of the supersolid problem.

The ratio in Eq. �31� depends on the momentum cutoff �
and the disorder �. We can see that increasing disorder � will
decrease the ratio; so if � is less than a critical value, no
matter what strength the disorder is, the ratio is always less
than 1. Thus direct transitions are forbidden except for m
=1. So for a given momentum cutoff � and interaction V, a
direction transition from MI to SF is forbidden if ���c,
where

�c
4 = 96�2�− ��V2, �33�

which follows from xBG

xMI �1 assuming �=0. In this case, for
any disorder strength, a direct transition is impossible be-
tween MI and SF at large fillings. This corroborates the result
derived earlier by Herbut33 that the MI phase is always sur-
rounded by the BG in the large-filling limit of the Bose-
Hubbard model.

FIG. 4. A typical phase diagram in � /J−V /J plane for disor-
dered Bose-Hubbard with Gaussian distributed disorder. There are
three phases: MI, BG, and SF. The phase at “X,” which is a MI,
becomes a SF when the disorder is increased.
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For large momentum cutoff ���c, the ratio xBG

xMI could be
greater or less than 1 depending on the disorder strength �. A
critical value of �c exists. Hence, for weak disorder, �
��c, we have a direct transition for large fillings ���c,
with

��c
2

V
= 1 −

1

96�2�− ��
��4

V2 � , �34�

which is derived from xBG

xMI �1 assuming ���c.
Renormalization also modifies the value of r to45

r��� = r0 exp��2 − Kd�2 + p�g̃ + pg�x�	�� = r0 exp�−
1

2
��

= r0Rc
−1/2, �35�

where we have considered only the replica symmetric case.
Here Rc is the correlation length Rc=exp����r0

−��r0
−1/2, so

r����r0
5/4, which means that the renormalization does not

shift the MI-SF phase boundary which occurs at r0=0.
Ultimately, it is the Bose glass that makes the disordered

boson problem distinct from the disordered electronic Mott
insulator. In the presence of disorder, the boson lattice ad-
justs �contracts or expands�, so that the chemical potential
remains in the gap. In the electron problem, in which the
electrons occupy pre-existing lattice sites, disorder changes
the position of the chemical potential.24 Consequently, for
the boson problem, it is the nature of the in-gap states that
ultimately determines whether the disordered system is local-
ized or not. However, as we see here the criterion is a com-
plicated function of the system parameters.

D. 3He impurities
3He increase the onset temperature for the missing mo-

ment of inertia. Although we do not have a microscopic
model for a grain boundary, the point defect model we have
outlined here explains this effect qualitatively as disorder can
enhance the superfluid region. In essence, a disordered sys-
tem with interaction V can be represented by a pure system
with an effective interaction Veff. If for a pure system, the
critical interaction is Vc, then for a disordered system, the
corresponding critical point is Veff=V−��2=Vc. An imme-
diate consequence is that the new boundary for the Mott-
superfluid transition is shifted to higher values of the on-site
interaction. That is, for the disordered system �with one bo-
son per site�, Vc is replaced by

Vc��� = Vc + �c�
2. �36�

Consequently, to remain on the phase boundary, increasing
the disorder must be compensated by an increase in the onset
temperature as is seen experimentally3 for 3He defects and
studied theoretically by Balatsky and Abrahams49 using a
Landau-Ginzburg approach. To formalize this, we consider
3He defects with a concentration c and an on-site energy �2.
We will treat the 4He atoms as having on-site energy �1 with
concentration 1−c. A rigorous treatment requires a binomial
distribution of disorder. However, to get the basic scene of
the influence of disorder, we use Gaussian distribution to

approach this disorder. The key parameter is the variance of
the distribution of on-site energies, �2=�d

2+c�1−c���2
−�1�2, where �d

2 is the disorder which can be eliminated by
annealing. For a clean system, the transition from the Mott
insulator to the superfluid is given by kBTc /J= �Vc−V� /Vc.

41

We now replace V by Veff and solve for Tc. The solution,

KBTc = p1J + ��p1J�2 + p2J + p3Jc�1 − c� , �37�

has a square-root dependence on p1=
�Vc−V�

2Vc
, p2=

�d
2

Vc
, and p3

=
��2−�1�2

Vc
. Knowing that the critical temperature is 0.2 K in

the absence of 3He impurities helps us to determine the re-
lationship between p2J and p1J. Thus, we have two free pa-
rameters p1J and p3J to fit the curve. We show in Fig. 5 a
plot with the fitting parameters p1J=−0.10 K, p3J
= �90 K�2, and p2J= �0.28 K�2. From the above formula, we
can see that if there are no impurities and no other disorder
that can be annealed away, that is, both c=0 and �d=0, we
obtain a negative Tc which means there is no supersolid tran-
sition. Also, if disorder is too large, Veff=V−��2�0, and the
“net interaction” is attractive, which results in an insulating
phase. Consequently, for sufficiently large disorder, we also
obtain the absence of a supersolid transition. Hence, al-
though the treatment here is not rigorous, it sufficiently rich
to capture the interplay between disorder, finite temperature,
and supersolidity. The quantitative agreement, which is tied
more to the functional form than to the fitting parameters,
lends credence to our claim that disorder underlies the miss-
ing moment of inertia in solid 4He.

IV. CONCLUSION

We have presented what we think is the minimal model
that captures disorder-induced superfluidity in bosonic sys-
tems. While we undoubtedly do not have the sufficient mi-
croscopic details to model actual grain boundaries, the re-
sults presented here offer a general framework in which the
general problem of disorder-induced superfluidity can be for-
mulated consistently. We have seen from our replica analysis
and the one-loop renormalization analysis that the phase
boundaries of the disordered Bose-Hubbard model can be

FIG. 5. �Color online� Critical temperature as a function of im-
purity concentration. Experimental data are taken from Ref. 6.
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determined but do not appear to be universal, in contrast to
the phase boundaries constructed from general consider-
ations in the early work of Fisher et al.26 In particular, a
direct MI-SF transition is possible as found earlier;30,32 how-
ever, the criterion depends on the disorder, interaction
strength, and filling numbers. Further, we have shown how
Mott insulating phases can be observed in unbounded distri-
butions. This application is particularly relevant to
experiments35 on optical lattices as the disorder in such sys-
tems always obeys an unbounded distribution. Since the
flows are to the strong disorder limit, a treatment �currently
not available� in this parameter space is essential to under-
standing the phase structure of the Bose-Hubbard model. Fi-
nally, because the MI phases always give rise to superfluids
for intermediate disorder �for example, 0�D�V for Gauss-
ian distributions�, we believe this model is the correct start-
ing point for analyzing the reports of missing moment of
inertia in solid 4He induced by disorder, in particular the
extreme sensitivity of the critical temperature to 3He impu-
rities.
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APPENDIX

In this section, we will derive the effective action. The
action is

S��� = ��
i,a

r�i
a�� j

a + c.c. + u�
i,a

��i
a�4 + v �

i,a�b

��i
a�2��i

b�2

+ O����6� , �A1�

where in momentum space

r =
1

J cos�ka0�
−� d	�T	b�	�b†�0�� , �A2�

and a0 is the lattice constant. The coefficients u, v are given
by the averages

u = −
1

24
� d	1 ¯ d	4�T	b

a�	1�ba�	2�ba†�	3�ba†�	4��

−
1

8
�� d	1d	2�T	b

a�	1�ba†�	2���2

, �A3�

v = −
1

24
� d	1 ¯ d	4�T	b

a�	1�bb�	2�ba†�	3�bb†�	4��

−
1

8
�� d	1d	2�T	b

a�	1�ba†�	2���
� �� d	3d	4�T	b

b�	3�bb†�	4��� . �A4�

To compute these correlation functions, we insert a complete
set of states,

�i,a�mi
a��mi

a� = 1, �A5�

between all b��	i� operators and integrate over all 	i. The
terms from the first term of the order of u, v of which the
order of replica indices are aabb or bbaa will cancel out
with the second term. Thus, we have

u = −
�

24
� �m + 1��m + 2�

�1
2��1 + �2�

+
m�m − 1�

�−1
2 ��−1 + �−2�� ,

v = − ��
a�b

� �m + 1�2

6�1,0
2 ��1,0 + �2,1�

+
m�m + 1�

12�1,0
2 ��1,0 + �0,1�

+
m�m + 1�

12�−1,0��−1,0 + �0,−1���−1,0 + �0,−1 − �0,1�

+
m�m + 1�

12�1,0��1,0 + �0,1���1,0 + �0,1 − �0,−1�

+ � m�m + 1�
12�−1,0

2 ��−1,0 + �0,−1�
+

m2

6�−1,0
2 ��−1,0 + �−2,−1��� ,

�A6�

where the energies are defined as follows:

E�mi
a,mi

b� =
Veff

2
�mi

a2 + mi
b2� − �eff�mi

a + mi
b� −

��2

2
mi

ami
b,

�A7�

�0,−1 = E�mi
a + 1,mi

b − 1� − E�mi
a,mi

b − 1�

= mV − �m + 2�D − � ,

�1,0 = E�mi
a + 1,mi

b� − E�mi
a,mi

b� = �+ = mV − �m + 1�D − � ,

�2,1 = E�mi
a + 1,mi

b + 1� − E�mi
a,mi

b + 1� = mV − mD − � ,

�−2,−1 = E�mi
a − 1,mi

b − 1� − E�mi
a,mi

b − 1�

= − �m − 1�V + mD + � ,

�−1,0 = E�mi
a − 1,mi

b� − E�mi
a,mi

b� = �−

= − �m − 1�V + �m − 1�D ,

�0,1 = E�mi
a − 1,mi

b + 1� − E�mi
a,mi

b + 1�

= − �m − 1�V + �m − 2�D + � ,

��1 = E�mi
a � 1,mi

b� − E�mi
a,mi

b� = ��,

��2 = E�mi
a � 2,mi

b� − E�mi
a � ,mi

b� ,

�−1 + �−2 = 2�− �m −
3

2
�V + �m − 2�D + �� ,
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�1 + �2 = 2��m +
1

2
�V − �m + 2�D − �� . �A8�

Here we have used the trick limn→0 �b�aA=limn→0�n−1�A
=−A. We can simplify the result further to

v =
�m + 1�2

12�+
2��+ + D/2�

+
m2

12�−
2��− + D/2�

+
m�m + 1�

12�V − 3D�
� 1

�+
+

1

�−
�2

. �A9�

To proceed, we make the approximation

1/�J cos�ka0�	 � 1/�J�1 − �ka0�2/2�	 = �1/J��1 + �ka0�2/2	 .

�A10�

We then rescale � by the factor �→�Ja0
d/2−1� and replace

�i and � by � ddx
a0

d and �d�, respectively. We have

S��� =� ddx� d���
a
�1 − J�m + 1

�+
+

m

�−
�� 1

a0
2

� ��a�x,	��2 +
1

2
���a�x,	��2 +

J2u

a0
2 �

a

��a�x,	��4

+
J2v
a0

2 �
a�b

��a�x,	��2��b�x,	��2 + O����6�� . �A11�

Denoting the momentum cutoff �= �
a0

from above, we have

gab =
J2

a0
2u = −

J2�2

12�2� �m + 1�2

�+
2��+ + D/2�

+
m2

�−
2��− + D/2�

+ �m�m + 1�
�V − 3D� � 1

�+
+

1

�−
�2�� , �A12�

gaa =
J2

a0
2v = −

J2�2

48�2� �m + 1��m + 2�
�+

2��m + 1
2�V − �m + 2�D − �	�

+ � m�m − 1�
�−

2�− �m − 3
2�V + �m − 2�D + �	� , �A13�

where the dependence on the cutoff is allowed.
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